Ôn tập Chuyên đề Toán Đại 10 - Chương 4, Bài 1: Bất phương trình
Bạn đang xem 20 trang mẫu của tài liệu "Ôn tập Chuyên đề Toán Đại 10 - Chương 4, Bài 1: Bất phương trình", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Ôn tập Chuyên đề Toán Đại 10 - Chương 4, Bài 1: Bất phương trình
Chương 4 BẤT ĐẲNG THỨC BẤT PHƯƠNG TRÌNH Bất phương trình bậc nhất - Bất phương trình bậc hai DẤU CỦA NHỊ THỨC BẬC NHẤT – BẤT PHƯƠNG TRÌNH BẬC NHẤT Định nghĩa: Bất phương trình bậc nhất là bất phương trình có dạng: ax b0, ax b 0, ax b0, ax b 0 với ab, . Giải và biện luận bất phương trình dạng: ax b 0 (1) bb Nếu a 0 thì (1)ax b x S ; aa bb Nếu a 0 thì (1)ax b x S ; aa Nếu a 0 thì (1) 0xb . Khi đó, xét: Nếu bS0. Nếu bS0. Lưu ý: Ta giải tương tự với ax b0, ax b 0, ax b 0. Dấu của nhị thức bậc nhất: Cho nhị thức bậc nhất f( x ) ax b , ( a 0). b x a f() x ax b Trái dấu với a 0 Cùng dấu với a Giải hệ bất phương trình bậc nhất 1 ẩn: ― Giải từng bất phương trình trong hệ. ― Lấy giao nghiệm. DẤU CỦA TAM THỨC BẬC HAI – BẤT PHƯƠNG TRÌNH BẬC HAI MỘT ẨN Dấu của tam thức bậc hai: Cho tam thức bậc hai f( x ) ax2 bx c , ( a 0) ― Trường hợp 1. 0: x fx() Cùng dấu với a ― Trường hợp 2. 0: xo Cùng dấu với 0 Cùng dấu với ― Trường hợp 3. 0: x1 x2 Cùng dấu với a 0 Trái dấu với 0 Cùng dấu với Nhận xét: Cho tam thức bậc hai f( x ) ax2 bx c , ( a 0) 21x x 1 3 Câu 10. Tập nghiệm của hệ bất phương trình là 43 x 3 x 2 4 4 3 1 A. 2; . B. 2; . C. 2; . D. 1; . 5 5 5 3 Câu 11. Cặp bất phương trình nào sau đây không tương đương 11 A. xx 1 và 2x 1 x 1 x 2 x 1 . B. 21x và 2x 1 0 . xx 33 C. xx2 20 và x 20. D. xx2 20 và x 20 . Câu 12. Cặp bất phương trình nào sau đây không tương đương: 11 11 A. 51x và 5x 1 0. B.51x và 5x 1 0 . xx 22 xx 22 C. xx2 30 và x 30. D. xx2 50 và x 50. 21x Câu 13. Với điều kiện x 1, bất phương trình 2 tương đương với mệnh đề nào x 1 sau đây: 43x 21x A. x 10hoặc 0 . B. 22 . x 1 x 1 21x C. 2 . D. Tất cả các câu trên đều đúng. x 1 Câu 14. Bất phương trình 2xx 3 2 tương đương với : 2 3 2 A. 2xx 3 2 với x . B. 2xx 3 2 với x 2 . 2 2 2x 3 0 2xx 3 2 C. hoặc . D. Tất cả các câu trên đều đúng. x 20 x 20 33 Câu 15. Bất phương trình 23x tương đương với : 2xx 4 2 4 3 3 A. 23x . B. x và x 2. C. x . D. Tất cả đều đúng. 2 2 Câu 16. Các giá trị của x thoả mãn điều kiện của bất phương trình 1 3 x 2 x 3 2 x 3là x A. x 2. B. x 3. C. x 3 và x 0 . D. x 2 và x 0 . 3 32xx 5 Câu 17. ệ bất phương trình có nghiệm là 63x 21x 2 5 75 7 A. x . B. x . C. x . D. Vô nghiệm. 2 10 2 10 xx 2 3 0 Câu 18. ệ bất phương trình có nghiệm là xx 2 3 0 A. 23 x . B. 23 x . 8 5 C. x –2 hoặc 0 x . D. 20 x hoặc x . 5 2 mx 20 m Câu 29. Cho hệ bất phương trình 2xx 3 3 . Xét các mệnh đề sau: 1 55 (I) Khi m 0 thì hệ bất phương trình đã cho vô nghiệm. (II) Khi m 0 thì hệ bất phương trình đã cho có tập nghiệm là . (III) Khi m 0 thì hệ 2 bất phương trình đã cho có tập nghiệm là ; . 5 2 (IV)Khi m 0 thì hệ bất phương trình đã cho có tập nghiệm là ; . 5 Trong các mệnh đề trên có bao nhiêu mệnh đề đúng ? A. 1. B. 0 . C. 2 . D. 3 . xx 3 4 0 Câu 30. Hệ bất phương trình vô nghiệm khi xm 1 A. m 2. B. m 2. C. m 1. D. m 0. 3 x 6 3 Câu 31. Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình 5xm có 7 2 nghiệm. A. m 11. B. m 11. C. m 11. D. m 11. x 30 Câu 32. Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình vô mx 1 nghiệm. A. m 4. B. m 4 . C. m 4. D. m 4. Câu 33. Cho bất phương trình: m22 x 21 m x (1). Xét các mệnh đề sau:Bất phương trình tương đương với xx 21 (2). (I) Với m 0, bất phương trình thoả x . (II) Với m i giá trị m thì bất phương trình vô nghiệm. Mệnh đề nào đúng? A. Ch (II). B. (I) và (II). C. (I) và (III). D. (I), (II) và (III). Câu 34. Giá trị nào của m thì phương trình x2 mx 1 3 m 0 có 2 nghiệm trái dấu? 1 1 A. m . B. m . C. m 2 . D. m 2. 3 3 Câu 35. Tìm tham số thực m để phương trình m 1 x2 2 m 2 x m 3 0 có 2 nghiệm trái dấu? A. m 1. B. m 2 . C. m 3. D. 13 m . Câu 36. Các giá trị m làm cho biểu thức f x x2 45 x m luôn luôn dương là A. m 9. B. m 9. C. m 9. D. m . Câu 45. Cho bất phương trình : 1 x mx 2 0 . Xét các mệnh đề sau: I Bất phương trình tương đương với mx 20. II m 0 là điều kiện c n để m i x 1 là nghiệm của bất phương trình . 2 III Với m 0, tập nghiệm của bất phương trình là x 1. m Mệnh đề nào đúng? A. Ch I . B. Ch III . C. II và III . D. Cả I , II , III . mx m 3 Câu 46. ịnh m để hệ sau có nghiệm duy nhất . m 39 x m A. m 1. B. m 2. C. m 2 . D. m 1. Câu 47. Với giá trị nào của a thì hai bất phương trình sau đây tương đương? a 1 x a 3 0 (1) a 1 x a 2 0 (2). A. a 1. B. a 5 . C. a 1. D. 11 a . xx 2 Câu 48. Nghiệm của bất phương trình 2 là x A. 01 x . B. x 1, x 2. C. x 0 , x 1. D. 01 x . 28 Câu 49. Cho bất phương trình . Các nghiệm nguyên nh hơn 13 của bất x 13 9 phương trình là A. x 7 và x 8. B. x 9 và x 10 . C. x 11 và x 12 . D. x 14 và x 15. HƯỚNG DẪN GIẢI CHI TIẾT Câu 1. Bất phương trình nào sau đây không tương đương với bất phương trình x 50? A. xx 1 2 5 0 . B. xx2 50 . C. xx 5 5 0 . D. xx 5 5 0 . Lời giải Chọn D x 50 x 5 . Tập nghiệm của bất phương trình là T1 5; + . x 50 x 5 xx 5 5 0 x 5 . x 50 x 5 Tập nghiệm của bất phương trình này là T2 5; + . Vì hai bất phương trình này không có cùng tập nghiệm nên chúng không tương đương nhau. Câu 2. Khẳng định nào sau đây đúng? 1 A. xx2 3 x 3 . B. 0 x 1. x
File đính kèm:
- on_tap_chuyen_de_toan_dai_10_chuong_4_bai_1_bat_phuong_trinh.pdf