Chuyên đề Số chính phương - Bồi dưỡng HSG Toán 9
Bạn đang xem tài liệu "Chuyên đề Số chính phương - Bồi dưỡng HSG Toán 9", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề Số chính phương - Bồi dưỡng HSG Toán 9

CHUYÊN ĐỀ : SỐ CHÍNH PHƯƠNG I. Số chính phương: A. Một số kiến thức: Số chính phương: số bằng bình phương của một số khác Ví dụ: 4 = 22; 9 = 32 A = 4n2 + 4n + 1 = (2n + 1)2 = B2 + Số chính phương khơng tận cùng bởi các chữ số: 2, 3, 7, 8 + Số chính phương chia hết cho 2 thì chia hết cho 4, chia hết cho 3 thì chia hết cho 9, chia hết cho 5 thì chia hết cho 25, chia hết cho 23 thì chia hết cho 24, + Số 1 1...1 = a thì 9 9...9 = 9a 9a + 1 = 9 9...9 + 1 = 10n n n n B. Một số bài toán: 1. Bài 1: Chứng minh rằng: Một số chính phương chia cho 3, cho 4 chỉ có thể dư 0 hoặc 1 Giải Gọi A = n2 (n N) a) xét n = 3k (k N) A = 9k2 nên chia hết cho 3 n = 3k 1 (k N) A = 9k2 6k + 1, chia cho 3 dư 1 Vậy: số chính phương chia cho 3 dư 0 hoặc 1 b) n = 2k (k N) thì A = 4k2 chia hết cho 4 n = 2k +1 (k N) thì A = 4k2 + 4k + 1 chia cho 4 dư 1 Vậy: số chính phương chia cho 4 dư 0 hoặc 1 Chú ý: + Số chính phương chẵn thì chia hết cho 4 + Số chính phương lẻ thì chia cho 4 thì dư 1( Chia 8 củng dư 1) 2. Bài 2: Số nào trong các số sau là số chính phương a) M = 19922 + 19932 + 19942 b) N = 19922 + 19932 + 19942 + 19952 c) P = 1 + 9100 + 94100 + 1994100 d) Q = 12 + 22 + ...+ 1002 e) R = 13 + 23 + ... + 1003 Giải Trang 1 c) C =11.....1.+ 44.....4 + 1 2n n n Đặt a = 11.....1 Thì C = 11.....111.....1 + 4. 11.....1 + 1 = a. 10 + a + 4 a + 1 n n n n = a(9a + 1) + 5a + 1 = 9a2 + 6a + 1 = (3a + 1)2 n d) D = 99....9 8 00.....0 1 . Đặt 99....9 = a 10 = a + 1 n n n n + 2 n + 1 n n D = 99....9 . 10 + 8. 10 + 1 = a . 100 . 10 + 80. 10 + 1 n 2 2 2 = 100a(a + 1) + 80(a + 1) + 1 = 100a + 180a + 81 = (10a + 9) = (99....9 ) n + 1 n + 2 e) E = 11.....1 22.....2 5 = 11.....1 22.....2 00 + 25 = 11.....1.10 + 2. 11.....100 + 25 n n + 1 n n + 1 n n 2 2 2 = [a(9a + 1) + 2a]100 + 25 = 900a + 300a + 25 = (30a + 5) = (33.....3 5) n f) F = 44.....4 = 4.11.....1 là số chính phương thì 11.....1 là số chính phương 100 100 100 Số 11.....1 là số lẻ nên nó là số chính phương thì chia cho 4 phải dư 1 100 Thật vậy: (2n + 1)2 = 4n2 + 4n + 1 chia 4 dư 1 11.....1 có hai chữ số tận cùng là 11 nên chia cho 4 thì dư 3 100 vậy 11.....1 không là số chính phương nên F = 44.....4 không là số chính phương 100 100 Bài 4: a) Cho các số A = 11........11 ; B = 11.......11 ; C = 66.....66 2m m + 1 m CMR: A + B + C + 8 là số chính phương . 102m 1 10m 1 1 10m 1 Ta có: A ; B = ; C = 6. Nên: 9 9 9 102m 1 10m 1 1 10m 1 102m 1 10m 1 1 6(10m 1) 72 A + B + C + 8 = + + 6. + 8 = 9 9 9 9 m 2 m 2 102m 1 10.10m 1 6.10m 6 72 10 16.10 64 10m 8 = = 9 9 3 b) CMR: Với mọi x,y Ỵ Z thì A = (x+y)(x+2y)(x+3y)(x+4y) + y4 là số chính phương. A = (x2 + 5xy + 4y2) (x2 + 5xy + 6y2) + y4 = (x2 + 5xy + 4y2) [(x2 + 5xy + 4y2) + 2y2) + y4 = (x2 + 5xy + 4y2)2 + 2(x2 + 5xy + 4y2).y2 + y4 = [(x2 + 5xy + 4y2) + y2)2 Trang 3 Bài tập về nhà: Bài 1: Các số sau đây, số nào là số chính phương a) A = 22.....2 4 b) B = 11115556 c) C = 99....9 00....0 25 50 n n 2 2 2 d) D = 44.....4 8 8....8 9 e) M =11.....1 – 22....2 f) N = 1 + 2 + ...... + 56 n n - 1 2n n Bài 2: Tìm số tự nhiên n để các biểu thức sau là số chính phương a) n3 – n + 2 b) n4 – n + 2 Bài 3: Chứng minh rằng a)Tổng của hai số chính phương lẻ không là số chính phương b) Một số chính phương có chữ số tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ Bài 4: Một số chính phương có chữ số hàng chục bằng 5. Tìm chữ số hàng đơn vị Trang 5
File đính kèm:
chuyen_de_so_chinh_phuong_boi_duong_hsg_toan_9.doc