Chuyên đề Ôn thi vào lớp 10 môn Toán - Đường tròn
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề Ôn thi vào lớp 10 môn Toán - Đường tròn", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề Ôn thi vào lớp 10 môn Toán - Đường tròn
ĐƯỜNG TRÒN CHỦ ĐỀ 1: SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O) + Đường tròn đi qua các điểm A1 ,A2 ,...,An gọi là đường tròn ngoại tiếp đa giác A1A2...An + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A1A2...An gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp + Trong tam giác đều , tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó PHƯƠNG PHÁP: Để chứng minh các điểm A1 ,A2 ,...,An cùng thuộc một đường tròn ta chứng minh các điểm A1 ,A2 ,...,An cách đều điểm O cho trước. Ví dụ 1) Cho tam giác đều ABC có cạnh bằng a . AM,BN,CP là các đường trung tuyến. Chứng minh 4 điểm B,P,N,C cùng thuộc một đường tròn. Tính bán kính đường tròn đó. Giải: Kéo dài AD,CB cắt nhau tại điểm T thì tam giác TCD vuông tại T . + Do MN là đường trung bình của tam giác ABD nên NM / /AD + MQ là đường trung bình của tam giác ABC nên MQ / /BC . Mặt khác AD BC MN MQ . Chứng minh tương tự ta cũng có: MN NP,NP PQ . Suy ra MNPQ là hình chữ nhật. Hay các điểm M,N,P,Q thuộc một đường tròn có tâm là giao điểm O của hai đường chéo NQ,MP Ví dụ 3) Cho tam giác ABC cân tại A nội tiếp đường tròn (O) . Gọi M là trung điểm của AC G là trọng tâm của tam giác ABM . Gọi Q là giao điểm của BM và GO . Xác định tâm đường tròn ngoại tiếp tam giác BGQ . Giải: A P N G M Q I K O B C Vì tam giác ABC cân tại A nên tâm O của vòng tròn ngoại tiếp tam giác nằm trên đường trung trực của BC .Gọi K là giao điểm của AO và BM Dưng các đường trung tuyến MN,BP của tam giác ABM cắt nhau tại trọng tâm G .Do MN / /BC MN AO . Gọi K là giao điểm của BM và AO thì K là trọng tâm của tam giác ABC suy ra GK / /AC . Gợi ý: B· CN 900 , hãy chứng minh B· MN 900 Ví dụ 5).Cho lục giác đều ABCDEF tâm O . Gọi M,N là trung điểm của CD,DE . AM cắt BN tại I . Chứng minh rằng các điểm M,I,O,N,D nằm trên một đường tròn. Giải: N B C E D M H1 K1 H I J K A D O O N B F E A Do ABCDEF là lục giác đều nên OM CD,ON DE M,N,C,D nằm trên đường tròn đường kính OD . Vì tam giác OBN OAM nên điểm O cách đều AM,BN suy ra OI là phân giác trong của góc A· IN . OH AM Kẻ DH1 2OH (Do OH là đường trung bình của tam giác DH1 AM DAH1 OK BN OK JO 1 Kẻ DK1 2OK (Do với J AD NB ) DK1 BN DK1 JD 2 Do OK OH DH1 DK1 suy ra D cách đều AM,BN hay ID là phân giác ngoài của A· IN O· ID 900 . Vậy 5 điểm M,I,O,N,D cùng nằm trên một đường tròn đường kính OD . Ví dụ 6) Cho hình vuông ABCD . Gọi M là trung điểm BC,N là điểm các cạnh đối diện. A2 ,B2 ,C2 là trung điểm của HA,HB,HC . Khi đó 9 điểm M,N,P,A1 ,B1 ,C1 ,A2 ,B2 ,C2 cùng nằm trên một đường tròn gọi là đường tròn Ơ le của tam giác Giải: A A2 B1 C 1 H P M Q I C2 B2 C B A1 N 1 1 a). Thật vậy ta có MN P A C P AC, MA P NC P BH mà BH AC 2 2 2 2 2 2 suy ra MNC2B2 là hình chữ nhật, tương tự ta có MPB2C2 , NPA2B2 là hình chữ nhật nên 9 điểm M,N,P,A1 ,B1 ,C1 ,A2 ,B2 ,C2 cùng nằm trên một đường tròn có tâm là trung điểm của các đường chéo của 3 hình chữ nhật trên. Từ đó ta suy ra tâm đường tròn Ơ le là trung điểm Q của HI Ví dụ 8) Cho tam giác ABC nội tiếp đường tròn (O) AD là đường kính của (O) . M là trung điểm của BC,H là trực tâm của tam giác. Gọi X,Y,Z lần lượt là hình chiếu vuông góc của điểm D lên HB,HC,BC . Chứng minh 4 điểm X,Y,Z,M cùng thuộc một đường tròn Ví dụ 9) Cho tam giác ABC có trực tâm H . Lấy điểm M,N thuộc tia BC sao cho MN BC và M nằm giữa B,C . Gọi D,E lần lượt là hình chiếu vuông góc của M,N lên AC,AB . Chứng minh cácđiểm A,D,E,H cùng thuộc một đường tròn. Giải: A D E H K C N B M Giả sử MD cắt NE tại K . Ta có HB / /MK do cùng vuông góc với AC suy ra H· BC K· MN ( góc đồng vị) . Tương tự ta cũng có H· CB K· NM kết hợp với giả thiết BC MN BHC KMN S BHC S KMN HK / /BC . Mặt khác ta có BC HA nên HK HA hay H thuộc đường tròn đường tròn đường kính AK . Dễ thấy E,D (AK) nên cácđiểm A,D,E,H cùng thuộc một đường tròn. Ví dụ 10) Cho tam giác ABC . P là điểm bất kỳ PA,PB,PC cắt đường tròn ngoại tiếp tam giác ABC tại A1 ,B1 ,C1 . Gọi A2 ,B2 ,C2 là các điểm đối xứng với A1 ,B1 ,C1 qua trung điểm của BC,CA,AB . Chứng minh rằng: A2 ,B2 ,C2 và trực tâm H của tam giác ABC cùng thuộc một đường tròn. Giải: A C2 B B 2 3 B C I 1 3 O A4 G H K B4 A P 2 C C4 1 C B A3 A1 1.Khi một đường thẳng có hai điểm chung A,B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: O O H A M B M A H B + OH AB OH R,HA HB R2 OH2 . Theo định lý Pitago ta có: OH2 MO2 MH2 Mặt khác ta cũng có: OH2 R2 AH2 nên suy ra MO2 MH2 R2 AH2 MH2 AH2 MO2 R2 (MH AH) MH AH MO2 R2 + Nếu M nằm ngoài đoạn AB thì MA.MB MO2 R2 + Nếu M nằm trong đoạn AB thì MA.MB R2 MO2 AB2 Mối liên hệ khoảng cách và dây cung: R2 OH2 4 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) , ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O) . Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O) Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm Ta có OH R Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C Mỗi tam giác có 3 đường tròn bàng tiếp. A M P D F B O O B C A N E C Đường tròn nội tiếp ΔABC Đường tròn bàng tiếp trong góc A CÁC DẠNG BÀI TẬP CƠ BẢN Ví dụ 1) Cho hình thang vuông ABCD (Aµ Bµ 900 ) có O là trung điểm của AB và góc C· OD 900 . Chứng minh CD là tiếp tuyến của đường tròn đường kính AB . Giải: A C H O E B D Ví dụ 3) Cho tam giác ABC cân tại A đường cao BH . Trên nửa mặt phẳng chứa C bờ AB vẽ Bx BA cắt đường tròn tâm B bán kính BH tại D . Chứng minh CD là tiếp tuyến của (B) Giải: A H α 1 B 2 C D x µ µ ¶ 0 Vì tam giác ABC cân tại A nên ta có: B C . Vì Bx BA B2 90 ¶ 0 ¶ ¶ . Mặt khác ta cũng có B1 90 B1 B2 . Hai tam giác BHC và BDC ¶ ¶ có BC chung, B1 B2 , BH BD R suy ra BHC BDC(c.g.c) suy ra B· HC B· DC 900 . Nói cách khác CD là tiếp tuyến của đường tròn (B) Ví dụ 4) Cho tam giác ABC vuông tại A (AB AC) đường cao AH . Gọi E là điểm đối xứng với B qua H . Đường tròn tâm O đường kính EC cắt AC tại K . Chứng minh HK là tiếp tuyến của đường tròn (O) . Giải: A I K 1 2 3 C B H E O
File đính kèm:
chuyen_de_on_thi_vao_lop_10_mon_toan_duong_tron.doc

