Chuyên đề Ôn thi THPTQG - Chuyên đề 8: Tương giao đồ thị hàm số (Mức 9-10 điểm) - Phần 1
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề Ôn thi THPTQG - Chuyên đề 8: Tương giao đồ thị hàm số (Mức 9-10 điểm) - Phần 1", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề Ôn thi THPTQG - Chuyên đề 8: Tương giao đồ thị hàm số (Mức 9-10 điểm) - Phần 1

TÀI LIỆU ÔN THI THPTQG Chuyên đề 8 TƯƠNG GIAO ĐỒ THỊ HÀM SỐ DẠNG TOÁN DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI MỨC 9-10 ĐIỂM Dạng 1. Biện luận m để phương trình có nghiệm thỏa mãn điều kiện k (hàm số khác) x 3 x 2 x 1 x Câu 1. (Mã 101 2019) Cho hai hàm số y và y x 2 x m ( m là tham x 2 x 1 x x 1 số thực) có đồ thị lần lượt là C1 và C2 . Tập hợp tất cả các giá trị của m để C1 và C2 cắt nhau tại đúng bốn điểm phân biệt là A. 2; . B. ;2 . C. 2; . D. ;2 . Lời giải Chọn A x 3 x 2 x 1 x Xét phương trình x 2 x m x 2 x 1 x x 1 x 3 x 2 x 1 x x 2 x m (1) x 2 x 1 x x 1 Hàm số x 3 x 2 x 1 x 2 khi x 2 x 3 x 2 x 1 x x 2 x 1 x x 1 p x x 2 x . x 2 x 1 x x 1 x 3 x 2 x 1 x 2x 2 khi x 2 x 2 x 1 x x 1 1 1 1 1 0,x 2; \ 1;0;1;2 2 2 2 2 x 2 x 1 x x 1 Ta có p x 1 1 1 1 2 0,x 2 2 2 2 2 x 2 x 1 x x 1 nên hàm số y p x đồng biến trên mỗi khoảng ; 1 , 1;0 , 0;1 , 1;2 , 2; . Mặt khác ta có lim p x 2 và lim p x . x x Bảng biến thiên hàm số y g x : Trang 1 TÀI LIỆU ÔN THI THPTQG x x 1 x 2 x 3 x 1 x m x 1 x 2 x 3 x 4 1 1 1 1 1 1 1 1 x 1 x m x 1 x 2 x 3 x 4 1 1 1 1 x x 1 4 m x 1 x 2 x 3 x 4 Đặt tập D1 1; và D2 ( ; 4) 4; 3 ( 3; 2) 2; 1 . 1 1 1 1 3 m, khi x D1 x 1 x 2 x 3 x 4 1 1 1 1 2x 5 m, khi x D2 x 1 x 2 x 3 x 4 1 1 1 1 3 , khi x D1 x 1 x 2 x 3 x 4 Đặt f x . 1 1 1 1 2x 5 , khi x D2 x 1 x 2 x 3 x 4 1 1 1 1 0, khi x D 2 2 2 2 1 x 1 x 2 x 3 x 4 f x . 1 1 1 1 2 >0, khi x D 2 2 2 2 2 x 1 x 2 x 3 x 4 Vậy hàm số đồng biến trên từng khoảng xác định lim f x 3 lim f x x ; x nên ta có bảng biến thiên Do đó để phương trình có 4 nghiệm phân biệt thì m 3 m 3; . x 2 x 1 x x 1 Câu 4. (Mã 104 2019) Cho hai hàm số y và y x 1 x m ( m là tham x 1 x x 1 x 2 số thực) có đồ thị lần lượt là C1 và C2 . Tập hợp tất cả các giá trị của m để C1 và C2 cắt nhau tại đúng bốn điểm phân biệt là A. ; 3 . B. 3; . C. ; 3. D. 3; . Lời giải Chọn B Xét phương trình hoành độ x 2 x 1 x x 1 x 2 x 1 x x 1 x 1 x m x 1 x m (1) x 1 x x 1 x 2 x 1 x x 1 x 2 Số nghiệm của (1) là số giao điểm của Trang 3 TÀI LIỆU ÔN THI THPTQG Bảng biến thiên hàm sốy g(x) Dựa vào bảng biến thiên ta thấy đường thẳng y m luôn cắt đồ thị hàm số y g(x) tại năm điểm phân biệt nên (C ) và (C ) luôn cắt nhau tại đúng năm điểm phân biệt với mọi giá trị củam . Kết hợp 1 2 điều kiện m nguyên thuộc ( 15;20) nên m 14; 13;...;18;19. Khi đó tổng tất cả các giá trị m là S 15 16 17 18 19 85. x x 1 x 2 Câu 6. Cho hai hàm số y và y ex 2020 3m ( m là tham số thực) có đồ thị lần x 1 x x 1 lượt là (C1) và (C2 ) . Có bao nhiêu số nguyên m thuộc ( 2019; 2020) để (C1) và (C2 ) cắt nhau tại 3 điểm phân biệt? A. 2692 . B. 2691. C. 2690 . D. 2693. Lời giải Chọn A x x 1 x 2 Xét phương trình hoành độ giao điểm ex 2020 3m x 1 x x 1 x x 1 x 2 ex 2020 3m (1). x 1 x x 1 x x 1 x 2 Đặt g(x) ex 2020 . x 1 x x 1 1 1 1 Ta có g (x) ex 0 với mọi x thuộc các khoảng sau ; 1 , (x 1)2 x2 x 1 2 1;0 , 0;1 và 1; nên hàm số y g(x) nghịch biến trên mỗi khoảng đó. Mặt khác ta có lim g(x) 2017 và lim g(x) . x x Bảng biến thiên hàm số y g(x) x ∞ 1 0 1 +∞ g'(x) + + + 2017 +∞ +∞ +∞ g(x) ∞ ∞ ∞ ∞ Do đó để (C1) và (C2 ) cắt nhau tại đúng ba điểm phân biệt thì phương trình (1) phải có ba nghiệm phân biệt. Điều này xảy ra khi và chỉ khi đường thẳng y 3m cắt đồ thị hàm số y g(x) 2017 tại ba điểm phân biệt khi và chỉ khi 3m 2017 m 672,3 . 3 Do m nguyên thuộc ( 2019; 2020) nên m 672; 671;...;2019. Vậy có tất cả 2692 giá trị m thỏa mãn. Trang 5 TÀI LIỆU ÔN THI THPTQG x 1 x x 1 x 2 Câu 8. Cho hai hàm số y và y 21 x 2m (m là tham số thực) có đồ thị lần x x 1 x 2 x 3 lượt là (C1) và (C2 ) . Tập hợp tất cả các giá trị của m để (C1) và (C2 ) cắt nhau tại đúng năm điểm phân biệt là A. 2; . B. ;2 . C. ;2 . D. ;4 . Lời giải Chọn C x 1 x x 1 x 2 Xét phương trình hoành độ giao điểm 21 x 2m x x 1 x 2 x 3 x x 1 x 2 x 3 21 x 2m . x 1 x 2 x 3 x 4 x x 1 x 2 x 3 Đặt g(x) 21 x . x 1 x 2 x 3 x 4 1 1 1 1 Ta có g (x) 21 x ln 2 0 x2 x 1 2 x 2 2 x 3 2 với mọi x thuộc các khoảng sau ; 3 , 3; 2 2; 1 , 1;0 và 0; nên hàm số y g(x) đồng biến trên mỗi khoảng đó Mặt khác ta có lim g(x) 4 và và lim g(x) . x x Bảng biến thiên hàm số y g(x) Do đó để C1 và C2 cắt nhau tại đúng năm điểm phân biệt thì phương trình (1) phải có 5 nghiệm phân biệt. Điều này xảy ra khi và chỉ khi đường thẳng y 2m cắt đồ thị hàm số y g(x) tại 5 điểm phân biệt khi và chỉ khi 2m 4 m 2 x x 1 x 2 Câu 9. Cho hai hàm số y và y x x 1 m (m là tham số thực) có đồ x2 1 x2 2x x2 4x 3 thị lần lượt là (C1) và (C2 ) . Số các giá trị m nguyên thuộc khoảng 20;20 để (C1) và (C2 ) cắt nhau tại năm điểm phân biệt là A. 22 . B. 39 . C. 21. D. 20 . Lời giải Chọn C x x 1 x 2 Xét phương trình hoành độ giao điểm x x 1 m x2 1 x2 2x x2 4x 3 x x 1 x 2 x x 1 m (1). x2 1 x2 2x x2 4x 3 x x 1 x 2 Đặt g(x) x x 1 . x2 1 x2 2x x2 4x 3 x2 1 x2 2x 2 x2 4x 5 x 1 Ta có g (x) 2 2 2 1 x2 1 x2 2x x2 4x 3 x 1 Trang 7
File đính kèm:
chuyen_de_on_thi_thptqg_chuyen_de_8_tuong_giao_do_thi_ham_so.docx