Chuyên đề Ôn thi THPTQG - Chuyên đề 26: Tích phân (Mức 7-8 điểm)
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề Ôn thi THPTQG - Chuyên đề 26: Tích phân (Mức 7-8 điểm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề Ôn thi THPTQG - Chuyên đề 26: Tích phân (Mức 7-8 điểm)

TÀI LIỆU ÔN THI THPTQG Chuyên đề 26 TÍCH PHÂN- PHƯƠNG PHÁP TÍNH TÍCH PHÂN TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ MỨC 7-8 ĐIỂM Dạng 1. Tích phân cơ bản có điều kiện 1.Định nghĩa: Cho hàm số y f x liên tục trên K ; a,b là hai phần tử bất kì thuộc K , F x là một nguyên hàm của f x trên K . Hiệu số F b F a gọi là tích phân của của f x từ a b đến b và được kí hiệu: f x dx F x b F b F a . a a 2. Các tính chất của tích phân: a b b b f x dx 0 f x g x dx f x dx g x dx a a a a a b b c b f x dx f x dx f x dx f x dx f x dx b a a a c b b b b k. f x dx k. f x dx Nếu f x g x x a;b thì f x dx g x dx . a a a a Bảng nguyên hàm của một số hàm thường gặp 1 1 x 1 ax b x .dx C ax b dx . C 1 a 1 1 1 1 dx ln x C dx .ln ax b C x ax b a 1 1 1 1 1 dx . C 2 dx C 2 x x ax b a ax b 1 sin x.dx cos x C sin ax b .dx .cos ax b C a 1 cosx.dx sin x C cos ax b .dx .sin ax b C a 1 1 1 .dx cot x C .dx .cot ax b C sin2 x sin2 ax b a 1 1 1 .dx tan x C .dx .tan ax b C cos2 x cos2 ax b a x x 1 e .dx e C eax b .dx .eax b C a a x dx 1 x a a x .dx C ln C ln a x2 a2 2a x a 1 Nhận xét. Khi thay x bằng ax b thì lấy nguyên hàm nhân kết quả thêm . a Trang 1 TÀI LIỆU ÔN THI THPTQG 4 4 2 1 2 1 8 2 f x dx 4x sin 2x 4 dx 2x cos2x 4x 4 . 2 4 8 0 0 0 2 Câu 4. (Mã 102 - 2019) Cho hàm số f (x) .Biết f (0) 4 và f (x) 2cos x 3, x ¡ , khi đó 4 f (x)dx bằng? 0 2 8 8 2 8 2 2 6 8 2 2 A. . B. . C. . D. . 8 8 8 8 Lời giải Chọn B , 1 cos 2x Ta có f (x) f (x)dx (2cos2 x 3)dx (2. 3)dx 2 1 (cos 2x 4)dx = sin 2x 4x C do f (0) 4 C 4 . 2 1 4 4 1 Vậy f (x) sin 2x 4x 4 nên f (x)dx ( sin 2x 4x 4)dx 2 0 0 2 2 1 4 8 2 ( cos 2x 2x2 4x) . 4 0 8 1 2 Câu 5. Biết rằng hàm số f x mx n thỏa mãn f x dx 3, f x dx 8. Khẳng định nào dưới đây 0 0 là đúng? A. m n 4. B. m n 4 . C. m n 2. D. m n 2 . Lời giải m Ta có: f x dx mx n dx = x2 nx C . 2 1 m 2 1 1 Lại có: f x dx 3 x nx 3 m n 3 1 . 0 2 0 2 2 m 2 2 f x dx 8 x nx 8 2m 2n 8 2 . 0 2 0 1 m n 3 m 2 Từ 1 và 2 ta có hệ phương trình: 2 . n 2 2m 2n 8 m n 4 . 1 7 2 Câu 6. Biết rằng hàm số f x ax2 bx c thỏa mãn f x dx , f x dx 2 và 0 2 0 3 4 4 3 A. . B. . C. . D. . 4 3 3 4 Lời giải a b Ta có: f x dx ax2 bx c dx = x3 x2 cx C . 3 2 Trang 3 TÀI LIỆU ÔN THI THPTQG 1 Câu 9. (Thi thử Lômônôxốp - Hà Nội 2019) Cho I 4x 2m 2 dx . Có bao nhiêu giá trị nguyên của 0 m để I 6 0 ? A. 1. B. 5. C. 2. D. 3. Lời giải Chọn D 1 1 Theo định nghĩa tích phân ta có I 4x 2m 2 dx 2x 2 2m 2 x 2m 2 2 . 0 0 Khi đó I 6 0 2m2 2 6 0 m2 4 0 2 m 2 Mà m là số nguyên nên m 1;0;1. Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu. a Câu 10. (Sở GD Kon Tum - 2019) Có bao nhiêu giá trị nguyên dương của a để 2x 3 dx 4 ? 0 A. 5 . B. 6 . C. 4 . D. 3 . Lời giải Chọn C a a Ta có: 2x 3 dx x2 3x a2 3a . 0 0 a Khi đó: 2x 3 dx 4 a2 3a 4 1 a 4 0 Mà a ¥ *nên a 1;2;3;4 . Vậy có 4 giá trị của a thỏa đề bài. Câu 11. (THPT Lương Thế Vinh - HN 2018).Có bao nhiêu số thực b thuộc khoảng ;3 sao cho b 4cos 2xdx 1? A. 8. B. 2. C. 4. D. 6. Lời giải b b k b 1 12 Ta có: 4cos 2xdx 1 2sin 2x 1 sin 2b . 2 5 b k 12 Do đó, có 4 số thực b thỏa mãn yêu cầu bài toán. 4 Câu 12. (Cần Thơ - 2018) Cho hàm số f x xác định trên R\ 2;2 thỏa mãn f x , x2 4 f 3 f 3 f 1 f 1 2. Giá trị biểu thức f 4 f 0 f 4 bằng A. 4 . B. 1. C. 2 . D. 3 . Lời giải 4 1 1 2 dx dx ln x 2 ln x 2 C Ta có: x 4 x 2 x 2 . Trang 5
File đính kèm:
chuyen_de_on_thi_thptqg_chuyen_de_26_tich_phan_muc_7_8_diem.docx