Chuyên đề học tập - Chương 3, Chủ đề 7: Tứ giác nội tiếp - Hình học 9
Bạn đang xem tài liệu "Chuyên đề học tập - Chương 3, Chủ đề 7: Tứ giác nội tiếp - Hình học 9", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề học tập - Chương 3, Chủ đề 7: Tứ giác nội tiếp - Hình học 9

BÀI 7. TỨ GIÁC NỘI TIẾP I. TÓM TẮT LÝ THUYẾT 1. Định nghĩa - Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn đó. - Trong Hình 1, tứ giác ABCD nội tiếp (O) và (O) ngoại tiếp tứ giác ABCD. 2. Định lí - Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng 180°. - Nếu một tứ giác có tổng số đo hai góc đổi diện bằng 180° thì tứ giác đó nội tiếp được đường tròn. 3. Một số dấu hiệu nhận biết tứ giác nội tiếp - Tứ giác có tổng hai góc đổi bằng 180°. - Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. - Tứ giác có 4 đỉnh cách đều một điểm cố định (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác. -Tứ giác có hai đinh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α. Chú ý: Trong các hình đã học thì hình chữ nhật, hình vuông, hình thang cân nội tiếp được đường tròn. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh tứ giác nội tiếp Phương pháp giải: Để chứng minh tứ giác nội tiếp, ta có thể sử dụng một trong các cách sau: Cách 1. Chứng minh tứ giác có tổng hai góc đôì bằng 180°. Cách 2. Chứng minh tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α. Cách 3. Chứng minh tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện. Cách 4. Tìm được một điểm cách đều 4 đỉnh của tứ giác. 4B. Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp tuyến AM, AN tói đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (AB < AC). Gọi 7 là trung điểm BC. a) Chứng minh năm điểm A, M, N, O, I thuộc một đường tròn. b) Chứng minh AM2 = AB.AC. c) Đường thẳng qua B, song song với AM cắt MN tại E. Chúng minh IE song song MC. d) Chứng minh khi d thay đổi quanh quanh điểm A thì trọng tâm G của tam giác MBC luôn nằm trên một đường tròn cô' định. III. BÀI TẬP VỂ NHÀ 5. Cho điểm C nằm trên nửa đường tròn (O) vói đường kính AB sao cho cung »AC lớn hơn cung B»C (C ≠ B). Đường thăng vuông góc vói AB tại O cắt dây AC tại D. Chứng minh tứ giác BCDO nội tiếp. 6. Cho đường tròn (O) đường kính AB. Trên đoạn thẳng OB lấy điểm H bất kì (H không trùng O, B). Trên đường thẳng vuông góc với OB tại H, lấy một điểm M ở ngoài đường tròn; MA và MB thứ tự cắt đường tròn (O) tại c và D. Gọi I là giao điểm của AD và BC. Chứng minh MCID và MCHB là tứ giác nội tiếp. 7. Cho hai đường tròn (O) và (O') cắt nhau tại A, B. Kẻ đường kính AC của (O) cắt đường tròn (O’) tại F. Kẻ đường kính AE của (O') cắt đưòng tròn (O) tại G. Chứng minh: a) Tứ giác GFEC nội tiếp; b) GC, FE và AB đồng quy. 8. Cho tam giác ABC cân tại A. Đường thẳng xy song song với BC cắt AB tại E và cắt AC tại F. Chúng minh tứ giác EFCB nội tiếp. 9. Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp. 10. Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E. a) Chứng minh BANC là tứ giác nội tiếp. b) Chứng minh CA là phân giác của B· CD . c) Chứng minh ABED là hình thang. d) Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất. d) Gọi E là trung điểm của IH và F là trung điểm AB. Chứng minh tứ giác KMEF nội tiếp từ đó suy ra ME vuông góc vói EF. BÀI 7. TỨ GIÁC NỘI TIẾP 1A. Xét tứ giác AMHN có: ·AMH ·ANH 900 900 1800 ĐPCM. Xét tứ giác BNMC có: B· NC B· MC 900 ĐPCM. 1B. HS tự chứng minh 1 2A. Ta có: ·AED (sđ »AD + sđ M»B ) 2 1 sđ D¼M M· CD. D· EP P· CD 1800 2 PEDC nội tiếp. 2B. Ta có: M· IC C· HM 900 MIHC nội tiếp (hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc vuông) 3A. a) Học sinh tự chứng minh b) ADB vuông tại D, có đường cao DH AD2 = AH.AB 1 c) E· AC E· DC sđ EC, E· AC K· HC 2 (Tứ giác AKCH nội tiếp) E· DC K· HC DF//HK (H là trung điểm DC nên K là trung điểm FC) ĐPCM. 3B. a) Học sinh tự chứng minh 1 b) N· EC C· BE sđ C»E 2 NEC NBE (g.g) ĐPCM. Từ G kẻ GG'//IK (G' MK) GG ' MG MG ' 2 1 IK AO không đổi (1) IK MI MK 3 3 2 MG ' MK G ' cố định (2). Từ (1) và (2) có G thuộc ( 3 1 G '; AO ). 3 5. Học sinh tự chứng minh. 6. Học sinh tự chứng minh. 7. Học sinh tự chứng minh. 8. Gợi ý: Chứng minh BEFC là hình thang cân 9. Gợi ý: ·AFE ·AHE (tính chất hình chữ nhật và ·AHE ·ABH (cùng phụ B· HE ) 10. a) Học sinh tự chứng minh. b) Học sinh tự chứng minh. c) Học sinh tự chứng minh. d) Chú ý: B· IA B· MA, B· MC B· KC Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp BIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC. Dấu "=" xảy ra B· IC 900 I A M A 11. HS tự làm. 12. a) HS tự chứng minh. b) OM R 2 c) MC. MD = MA2 = MH.MO MC. MD = MH.MO MHC MDO (c.g.c)
File đính kèm:
chuyen_de_hoc_tap_chuong_3_chu_de_7_tu_giac_noi_tiep_hinh_ho.docx