Chuyên đề Bồi dưỡng học sinh giỏi Toán 8 - Chủ đề 13: Sử dụng công thức diện tích để thiết lập quan hệ độ dài của các đoạn thẳng
Bạn đang xem tài liệu "Chuyên đề Bồi dưỡng học sinh giỏi Toán 8 - Chủ đề 13: Sử dụng công thức diện tích để thiết lập quan hệ độ dài của các đoạn thẳng", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề Bồi dưỡng học sinh giỏi Toán 8 - Chủ đề 13: Sử dụng công thức diện tích để thiết lập quan hệ độ dài của các đoạn thẳng
CHUYÊN ĐỀ 13 – SỬ DỤNG CÔNG THỨC DIỆN TÍCH ĐỂ THIẾT LẬP QUAN HỆ ĐỘ DÀI CỦA CÁC ĐOẠN THẲNG A. Một số kiến thức: 1. Công thức tính diện tích tam giác: 1 S = a.h (a – độ dài một cạnh, h – độ dài đường cao tương ứng) 2 2. Một số tính chất: Hai tam giác có chung một cạnh, có cùng độ dài đường cao thì có cùng diện tích Hai tam giác bằng nhau thì có cùng diện tích B. Một số bài toán: 1. Bài 1: CI + BK Cho ABC có AC = 6cm; AB = 4 cm; các đường cao AH; BK; CI. Biết AH = 2 Tính BC A Giải 2S 2S K Ta có: BK = ABC ; CI = ABC AC AB I 1 1 BK + CI = 2. SABC AC AB B H C 1 1 1 1 1 2AH = 2. . BC. AH . BC. = 2 2 AC AB AC AB 1 1 1 1 BC = 2 : = 2 : = 4,8 cm AC AB 6 4 Bài 2: Cho ABC có độ dài các cạnh là a, b, c; độ dài các đường cao tương ứng là ha, hb, hc. Biết rằng a + ha = b + hb = c + hc . Chứng minh rằng ABC là tam giác đều Giải Gọi SABC = S 2S 2S 1 1 a - b Ta xét a + ha = b + hb a – b = ha – hb = - 2S. - 2S. b a b a ab a - b 2S a – b = 2S. (a – b) 1 - = 0 ABC cân ở C hoặc vuông ở C (1) ab ab Tương tự ta có: ABC cân ở A hoặc vuông ở A (2); ABC cân ở B hoặc vuông ở B (3) Đẳng thức xẩy ra khi S1 = S2 = S3 O là trọng tâm của tam giác ABC Bài 4: Cho tam giác đều ABC, các đường caoAD, BE, CF; gọi A’, B’, C’ là hình chiếu của M (nằm bên trong tam giác ABC) trên AD, BE, CF. Chứng minh rằng: Khi M thay đổi vị trí trong tam giác ABC thì: a) A’D + B’E + C’F không đổi b) AA’ + BB’ + CC’ không đổi Giải Gọi h = AH là chiều cao của tam giác ABC thì h không đổi Gọi khoảng cách từ M đến các cạnh AB; BC; CA là MP; MQ; MR thì A’D + B’E + C’F = MQ + MR + MP A Vì M nằm trong tam giác ABC nên SBMC + SCMA + SBMA = SABC BC.(MQ + MR + MP) = BC.AH MQ + MR + MP = AH E F A’D + B’E + C’F = AH = h C' R P B' Vậy: A’D + B’E + C’F = AH = h không đổi A' M b) AA’ + BB’ + CC’ = (AH – A’D)+(BE – B’E) (CF – C’F) B Q D C = (AH + BE + CF) – (A’D + B’E + C’F) = 3h – h = 2h không đổi Bài 5: Cho tam giác ABC có BC bằng trung bình cộng của AC và AB; Gọi I là giao điểm của các phân giác, G là trọng tâm của tam giác. Chứng minh: IG // BC Giải Gọi khoảng cách từ a, I, G đến BC lần lượt là AH, IK, GD Vì I là giap điểm của ba đường phân giác nên khoảng cách từ I đến ba cạnh A AB, BC, CA bằng nhau và bằng IK Vì I nằm trong tam giác ABC nên: I G SABC = SAIB + SBIC + SCIA BC.AH = IK(AB+BC+CA) (1) AB + CA Mà BC = AB + CA = 2 BC (2) B H K D M C 2 1 Thay (2) vào (1) ta có: BC. AH = IK. 3BC IK = AH (a) 3 Vì G là trọng tâm của tam giác ABC nên: 1 1 1 SBGC = SABC BC . GD = BC. AH GD = AH (b) 3 3 3
File đính kèm:
- chuyen_de_boi_duong_hoc_sinh_gioi_toan_8_chu_de_13_su_dung_c.docx