Chuyên đề 8: Phân tích đa thức thành nhân tử - Bồi dưỡng Học sinh giỏi Toán 8
Bạn đang xem tài liệu "Chuyên đề 8: Phân tích đa thức thành nhân tử - Bồi dưỡng Học sinh giỏi Toán 8", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề 8: Phân tích đa thức thành nhân tử - Bồi dưỡng Học sinh giỏi Toán 8
CHUYÊN ĐỀ: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ Dạng 1: PHÂN TÍCH ĐA THỨC BẬC BA VÀ BẬC 4 A. LÝ THUYẾT Phương pháp: Dùng máy tính nhẩm nghiệm hoặc tổng các hệ số bằng 0 thì đa thức có 1 nghiệm x = 1 Tổng hệ số bậc chẵn bằng tổng hệ số bậc lẻ thì đa thức có 1 nghiệm là x = - 1 1 số HĐT đáng nhớ: 2 2 1, a b a2 b2 2ab a b 4ab 2 2 2, a b a2 b2 2ab a b 4ab 2 2 3, a2 b2 a b 2ab a b 2ab 3 4, a3 b3 a b a2 ab b2 a b 3ab a b 3 5, a3 b3 a b a2 ab b2 a b 3ab a b 2 2 6, 2 a2 b2 a b a b 2 2 7, a b a b 4ab 2 8, a4 b4 a b a b a b 2ab 2 9, a4 b4 a b 2 2ab 2 ab 2 . 10, a3 b3 c3 3abc a b c a2 b2 c2 ab bc ca . 11, a4 a2b2 b4 a2 ab b2 a2 ab b2 . 12, a4 a2 1 a2 a 1 a2 a 1 . B. LUYỆN TẬP Bài 1: Phân tích đa thức thành nhân tử: a3 4a2 29a 24 HD: Bấm máy nhận thấy đa thức có ba nghiệm là 1,3 và -8, nên sẽ có chứa các nhân tử (a - 1), (a - 3) và (a + 8), Ta có: a3 4a2 29a 24 a3 a2 5a2 5a 24a 24 a2 a 1 5a a 1 24 a 1 a 1 a2 5a 24 = a 1 a 3 a 8 Bài 2: Phân tích đa thức thành nhân tử: x4 6x3 7x2 6x 1 HD: Nhận thấy đa thức bậc 4 này không dùng được máy tính Và đa thức không có hai nghiệm là 1 và -1 Tuy nhiên đa thức lại có hệ số cân xứng nhau: Nên ta làm như sau: 4 3 2 2 2 6 1 2 2 1 1 x 6x 7x 6x 1 x x 6x 7 2 x x 2 6 x 7 x x x x 1 1 Đặt x t x2 t 2 2 x x2 x4 x2 1 1996x2 1996x 1996 x2 x 1 x2 x 1 1996 x2 x 1 x2 x 1 x2 x 1997 Bài 11: Phân tích thành nhân tử: x4 2004x2 2003x 2004 HD: x4 2004x2 2004x x 2004 x4 x 2004 x2 x 1 x x3 1 2004 x2 x 1 x x 1 x2 x 1 2004 x2 x 1 x2 x 1 x2 x 2004 Bài 12: Phân tích đa thức thành nhân tử: x2 x 2001.2002 HD : Ta có: x2 x 2001 2001 1 x2 x 20012 2001 x2 20012 x 2001 x 2011 x 2011 x 2011 x 2011 x 2012 Bài 13: Phân tích đa thức thành nhân tử: x x 4 x 6 x 10 128 HD : x x 10 x 4 x 6 128 x2 10x x2 10x 24 128 Đặt : x2 10x t , Khi đó đa thức trở thành : t t 24 128 t 2 24t 128 t 8 t 16 Thay t trở lại đa thức ta đươc : x2 10x 8 x2 10x 16 x2 10x 8 x 2 x 8 Bài 14: Phân tích đa thức thành nhân tử: x4 6x3 7x2 6x 1 HD : Nhận thấy đa thức bậc 4 này không dùng được máy tính và đa thức không có hai nghiệm là 1 và -1 Tuy nhiên đa thức lại có hệ số cân xứng nhau: nên ta làm như sau: 4 3 2 2 2 6 1 2 2 1 1 x 6x 7x 6x 1 x x 6x 7 2 x x 2 6 x 7 x x x x 1 2 1 2 2 2 2 2 2 2 Đặt x t x 2 t 2Đa thức trở thành : x t 2 6t 7 x t 6t 9 x t 3 x x Thay t trở lại ta được : 2 2 2 2 1 2 x 1 3x 2 2 x x 3 x (x 3x 1) x x 2 Vậy x4 6x3 7x2 6x 1 x2 3x 1 Bài 15: Phân tích đa thức thành nhân tử: x2 x 1 x2 x 2 12 HD : Đặt x2 x t khi đó đa thức trở thành : t 1 t 2 12 t 2 3t 10 t 2 t 5 Thay t trở lại đa thức ta được : x2 x 2 x2 x 5 x 1 x 2 x2 x 5 Bài 16: Phân tích đa thức thành nhân tử: x2 4 x2 10 72 HD : Đặt x2 4 t khi đó đa thức trở thành : t t 6 72 t 2 6t 72 t 12 t 6 x2 16 x2 2 x 4 x 4 x2 2 Bài 17: Phân tích đa thức thành nhân tử: x4 6x3 11x2 6x 1 Bài 23: Phân tích đa thức thành nhân tử: x4 x3 2x2 x 1 HD : (x4 x3 x2 ) (x2 x 1) x2 (x2 x 1) (x2 x 1) (x2 x 1)(x2 1) Bài 24: Phân tích đa thức thành nhân tử: 6a4 7a3 37a2 8a 12 HD : Nhẩm thấy đa thức có nghiệm là x=2, hay có 1 nhân tuer là x - 2 Ta có : 6a4 7a3 37a2 8a 12 (6a4 12a3 ) (19a3 38a2 ) a2 2a 6a 12 6a3 a 2 19a2 a 2 a a 2 6 a 2 a 2 6a3 19a2 a 6 = a 2 a 3 2a 1 3a 2 Bài 25: Phân tích đa thức thành nhân tử: x4 6x3 13x2 12x 4 HD : Thấy tổng các hệ số bậc chẵn bằng tổng hệ số bậc lẻ, nên đa thức có 1 nghiệm bằng -1 Ta có : x4 6x3 13x2 12x 4 x4 x3 5x3 5x2 8x2 8x 4x 4 = x3 x 1 5x2 x 1 8x x 1 4 x 1 x 1 x3 5x2 8x 4 = x 1 2 x 2 2 2 Bài 26: Phân tích đa thức thành nhân tử: x2 4x 8 3x3 14x2 24x HD : 2 x2 4x 8 3x x2 4x 8 2x2 , Đặt: x2 4x 8 y y2 3xy 2x2 => y x y 2x Bài 27: Phân tích đa thức thành nhân tử: x4 2010x2 2009x 2010 HD : x4 x2 1 2009x2 2009x 2009 x2 x 1 x2 x 1 2009 x2 x 1 x2 x 1 x2 x 2010 Bài 28: Phân tích đa thức thành nhân tử: x2 3x 4 x2 x 6 24 HD : Ta có : x2 3x 4 x2 x 6 24 x 1 x 4 x 2 x 3 24 x 2 x 4 x 1 x 3 24 x2 2x 8 x2 2x 3 24 Đặt : x2 2x t , khi đó đa thức trở thành : t 8 t 3 24 t 2 11t t t 11 Thay t trở lại ta được : x2 2x x2 2x 11 x x 2 x2 2x 11 Bài 29: Phân tích đa thức thành nhân tử: x2 2x 7 x2 2x 4 x2 2x 3 HD : Đặt : x2 2x t , khi đó đa thức trở thành : t 7 t 4 t 3 t 7 t 2 7t 12 t 2 6t 5 t 1 t 5 , Thay t trở lại ta được : x2 2x 1 x2 2x 5 x 1 2 x2 2x 5 Bài 30: Phân tích đa thức thành nhân tử: x4 10x3 26x2 10x 1 HD : 4 3 2 2 2 10 1 2 2 1 1 x 10x 26x 10x 1 x x 10x 26 2 x x 2 10 x 26 x x x x b c a 0,b c a 0,b c a 0,b c a 0 A 0 x2 x 1 x5 x4 x2 x 1 b, Ta có: x5 x 1 x5 x2 x2 x 1 x2 x3 1 x2 x 1 = x2 x 1 x2 x 1 x2 x 1 x2 x 1 x3 x2 1 c, Ta có: x8 x 1 x8 x2 x2 x 1 x2 x6 1 x2 x 1 x2 x3 1 x 1 x2 x 1 x2 x 1 x2 x 1 x6 x5 x3 x2 1 Bài 5: Phân tích đa thức thành nhân tử: a, 64x4 y4 b, 4x4 y4 c, x4 324 HD: 2 2 2 a, Ta có: 64x4 y4 8x2 y2 2.8x2 y2 16x2.y2 8x2 y2 4xy 2 8x2 y2 4xy 8x2 y2 4xy 2 2 2 2 b, Ta có: 4x4 y4 2x2 y2 2x2 y2 2.2x2.y2 4x2 y2 2 2x2 y2 2xy 2 2x2 y2 2xy 2x2 y2 2xy 2 2 c, Ta có: x4 324 x2 18 2 x2 18 2 2.x2.18 36x2 2 x2 18 6x 2 x2 18 6x x2 18 6x Bài 6: Phân tích đa thức thành nhân tử: a, x4 64 b, 81x4 4y4 c, x4 4y4 HD: 2 2 a, Ta có: x4 64 x2 82 x2 82 2.x2.8 16x2 2 x2 8 4x 2 x2 8 4x x2 8 4x 2 2 2 2 b, Ta có: 81x4 4y4 9x2 2y2 9x2 2y2 2.9x2.2y2 36x2 y2 9x2 2y2 6xy 2 9x2 2y2 6xy 9x2 2y2 6xy 2 2 2 2 c, Ta có: x4 4y4 x2 2y2 x2 2y2 2.x2.2y2 4x2 y2 2 x2 2y2 2xy 2 x2 2y2 2xy x2 2y2 2xy Bài 7: Phân tích đa thức thành nhân tử: a, x4 y4 4 b, 4x4 y4 1 c, 4x4 81 HD: 2 2 a, Ta có: x4 y4 4 x2 y2 22 x2 y2 22 2.x2 y2.2 4x2.y2 2 x2 y2 2 2xy 2 x2 y2 2xy 2 x2 y2 2xy 2 2 2 b, Ta có: 4x4 y4 1 2x2 y2 1 2x2 y2 1 2.2x2 y2 4x2 y2 2 2x2 y2 1 2xy 2 2x2 y2 1 2xy 2x2 y2 1 2xy 2 2 c, Ta có: 4x4 81 2x2 92 2x2 92 2.2x2.9 36x2 2 2x2 9 6x 2 2x2 9 6x 2x2 9 6x Bài 8: Phân tích đa thức thành nhân tử: a, 64x4 y4 b, a4 64 c, a4 4b2 HD:
File đính kèm:
- chuyen_de_8_phan_tich_da_thuc_thanh_nhan_tu_boi_duong_hoc_si.docx