Chuyên đề 16: Đồng dư thức - Bồi dưỡng Học sinh giỏi Toán 8
Bạn đang xem tài liệu "Chuyên đề 16: Đồng dư thức - Bồi dưỡng Học sinh giỏi Toán 8", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Chuyên đề 16: Đồng dư thức - Bồi dưỡng Học sinh giỏi Toán 8
Chuyên đề ĐỒNG DƯ THỨC A.Tóm tắt các kiến thức cơ bản : I/Định nghĩa : Cho m là số nguyên dương. Hai số nguyên a và b được gọi đồng với nhau theo module m, nếu a - b chia hết cho m ( a - b )| m hay m\(a - b) Ký hiệu : a ≡ b (mod m) được gọi là một đồng dư thức. Ví dụ : 3 ≡ - 1 (mod 4) 5 ≡ 17 (mod 6) 18 ≡ 0 (mod 6) Điều kiện a ≡ 0 (mod m) có nghĩa là a là bội của m, k/h: a m (a | m) hay m là ước của a ( m \ a) . Nếu a - b không chia hết cho m, ta viết a ≡ b (mod m) II/ Các tính chất cơ bản : 1) Với mọi số nguyên a, ta có a ≡ a (mod m) 2) a ≡ b (mod m) => b ≡ a (mod m) 3) a ≡ b (mod m) và b ≡ c (mod m) => a ≡ c (mod4) a ≡ b (mod m) và c ≡ d (mod m) => a + c ≡ b + d (mod m) Hệ quả : a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1 + a2 + a3 + ... + an ≡ b1 + b2 + b3 + ... + bn(mod m) 5) a ≡ b (mod m) và c ≡ d (mod m) => a.c ≡ b.d (mod m) Hệ quả : a) a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m) => a1.a2.a3. ... .an ≡ b1.b2.b3. ... .bn(mod m) b) a ≡ b (mod m) => an ≡ bn (mod m) - với mọi n N +Nhận xét : a) * a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a + b ≡ 2 (mod 2) Mà 2 ≡ 0 (mod 2) => a + b ≡ 0 (mod 2) * a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a.b ≡ 1(mod 2) Điều này có nghĩa : Tổng của hai số lẻ là một số chẵn, tích của hai số lẻ là một số lẻ. b)a ≡ 3 (mod 7) => a2 ≡ 9 (mod 7) ≡ 2 (mod 2) Điều này có nghĩa : Nếu một số chia 7 dư 3 thì bình phương số đó chia 7 dư 2.Chú ý : a)Không được chia hai vế của một đồng dư thức . Ví dụ : * 2 ≡ 12 (mod 10) nhưng 1 ≡ 6 (mod 10). b) a ≡ 0 (mod m) và b ≡ 0 (mod m), nhưng a.b có thể đồng dư với 0 theo module m. Ví dụ : 2 ≡ 0 (mod 10) và 5 ≡ 0 (mod 10), nhưng 2.5 = 10 ≡ 10 (mod 10). 1 Vậy 3100 chia cho 7 dư 4. 32 * Cách 2: 3100 34.396 34. 33 4 + 3 81 4 mod 7 (1) 3 + 33 27 6 mod 7 mà 6 1 mod 7 3 1 mod 7 32 32 32 Do đó, 33 1 mod 7 33 1 mod 7 (2) 32 Từ (1) và (2) 34. 32 4.1 mod 7 3100 4 mod 7 Vậy 3100 chia cho 7 dư 4. Bài 4 : CMR các số A = 61000 - 1 và B = 61001 + 1 đều là bội số của 7 Giải : Ta có 6 ≡ - 1 (mod 7) => 61000 ≡ 1 (mod 7) => 61000 - 1 7 Vậy A là bội của 7 Từ 61000 ≡ 1 (mod 7) => 61001 ≡ 6 (mod 7) , mà 6 ≡ - 1 (mod 7) => 61001 ≡ -1 (mod 7) => 61001 + 1 7 Vậy B là bội của 7 Bài 5: Tìm số dư khi chia tổng 3100 3105 cho 13 Giải * Tìm số dư khi chia 3100 cho 13: là tìm số tự nhiên nhỏ hơn 13, đồng dư với 3100 theo modun 13 32 Ta có: 3100 34.396 34. 33 +) 34 81 13.6 3 34 3 mod13 (1) +) 33 27 13.2 1 33 1 mod13 3 32 32 3 32 3 1 mod13 3 1 mod13 (2) 4 3 32 100 Từ (1) và (2) 3 . 3 3.1 mod13 3 3 mod13 (1) 35 Mặt khác: 3105 33 35 105 Mà 33 27 1 mod13 33 135 mod13 Hay 3 1 mod13 (2) Từ (1) và (2) 3100 3105 3 1 mod13 3100 3105 4 mod13 100 105 Vậy tổng 3 3 chia cho 13 dư 4 Bài 6 : Tìm số dư trong phép chia 15325 - 1 cho 9 3 => 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7) Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222 = (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1) Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2) Nên (- 4)5555 + 42222 ≡ 0 (mod 7) Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7. Bài 12 : Tìm dư trong phép chia 570 + 750 cho 12 Giải : Ta có 52 ≡ 1(mod 12) => (52)35 ≡ 1 (mod 12) hay 570 ≡ 1(mod 12) (1) 72 ≡ 2 (mod 12) => (72)25 ≡ 1(mod 12) hay 750 ≡ 1(mod 12) (2) Từ (1) và (2) => 570 + 750 chia cho 12 dư 2. Bài 13 : Tìm số dư của A = 776776 + 777777 + 778778 khi chia cho 3 và khi chia cho 5? Giải : +Ta có 776 ≡ - 1(mod 3) => 776776 ≡ -1(mod 3) => 776776 ≡ 1 (mod 3) 777 ≡ 0 (mod 3) => 777777 ≡ 0 (mod 3) 778 ≡ 1 (mod 3) => 778778≡ 1 (mod 3) => 776776 + 777777 + 778778 khi chia cho 3 dư 2. +Ta có 776 ≡ 1 (mod 5) => 776776 ≡ 1 (mod 5) 777 ≡ - 3 (mod 5) => 777777 ≡ - 3777 (mod 5) 778 ≡ 3 (mod 5) => 778778 ≡ 3778 (mod 5) => 776776 + 777777 + 778778 ≡ 1 - 3777 + 3778 (mod 5) Hay 776776 + 777777 + 778778 ≡ 1 + 3.3777 - 3777 (mod 5) 776776 + 777777 + 778778 ≡ 1 + 3777(3 - 1) (mod 5) 776776 + 777777 + 778778 ≡ 1 + 2.3777 Mà 32 ≡ - 1(mod 3) => (32)388.3 ≡ 3 (mod 5) Vậy A = 776776 + 777777 + 778778 ≡ 1 + 2.3 ≡ 2 (mod 5) Vậy A chia cho 5 dư 2. Bài 14 : Tìm số dư của A = 32005 + 42005 khi chia cho 11 và khi chia cho 13 ? Giải : +Ta có : 35 ≡ 1 (mod 11) => (35)401 ≡ 1 (mod 11) Và 45 ≡ 1 (mod 11) => (45)401 ≡ 1 (mod 11) => A = 32005 + 42005 ≡ 2 (mod 11) => A chia cho 11 dư 2 +Ta có : 33 ≡ 1 (mod 13) => (33)668. 3 ≡ 1.3 (mod 13) => 32005 ≡ 3 (mod 13) Và 43 ≡ -1 (mod 13) =>(43)668 .4≡ 1.4 (mod 13) => 42005 ≡ 4 (mod 13) => A = 32005 + 42005 ≡ 7 (mod 13) 5 Từ (1) và (2) => ab ≡ 8 (mod 12) => n chia cho 12 dư 8 Do n = 8p + 4 là số chẵn mà n = ab => b {0; 2; 4; 6; 8} Nếu b = 0 => a = 14 (loại - vì a là số có một chữ số khác 0) b = 2 => a = 12 (loại) b = 4 => a = 10 (loại) b = 6 => a = 8 b = 8 => a = 6 => Số cần tìm là 86 hoặc 68 => Số bị chia là 68. Bài 19: Biết rằng ngày 20 / 11/1994 là ngày chủ nhật. Tính xem: a) Ngày 20 / 11/1996 là ngày thứ mấy? b) Ngày 20 / 11/2011 là ngày thứ mấy? Giải a) Vì 1996 chia hết cho 4 nên năm 1996 là năm nhuận, có 366 ngày. Từ 20 / 11/1994 đến 20 / 11/1996 là 2 năm, có: 365 . 2 + 1 (nhuận) = 731 (ngày) Biết rằng cứ mõi tuần lễ có 7 ngày. Ta có: 731 = 7. 104 + 3 hay 731 3 mod 7 Như vậy, 731 ngày gồm 104 tuần và lẻ 3 ngày. Do đó, nếu ngày 20 / 11/1994 là ngày chủ nhật thì 20 / 11/1996 là ngày thứ 4. b) Từ 20 / 11/1994 đến 20 / 11/2011 là 17 năm có 4 năm nhuận là 1996, 2000, 2004, 2008. Vậy Từ 20 / 11/1994 đến 20 / 11/2011 có: 365 . 17 + 4 (nhuận) = 6209 (ngày) Biết rằng cứ mõi tuần lễ có 7 ngày. Ta có: 6209 = 7 . 887 Hay 6209 0 mod 7 Như vậy, 6209 ngày gồm 887 tuần Do đó, nếu ngày 20 / 11/1994 là ngày chủ nhật thì 20 / 11/1996 cũng là ngàychủ nhật. Dạng 2 : Tìm chữ số tận cùng của một số a)Tìm một chữ số tận cùng của an : -Nếu a có chữ số tận cùng là 0; 1; 5 hoặc 6 thì an lần lượt có chữ số tận cùng lần lượt là 0; 1; 5 hoặc 6. -Nếu a có chữ số tận cùng là 2, 3 hoặc 7, ta vận dụng nhận xét sau với k Z 24k ≡ 6 (mod 10) 34k ≡ 1 (mod 10) 74k ≡ 1 (mod 10) Do đó để tìm chữ số tận cùng của an với a có chữ số tận cùng là 2; 3; 7 ta lấy n chia cho 4. Giả sử n = 4k + r với r {0; 1; 2; 3} Nếu a ≡ 2 (mod 10) thì an ≡ 2n = 24k + r ≡ 6.2r (mod 10) 7 a20k ≡ 76 (mod 100 nếu a ≡ 2; 4; 6; 8 (mod 10) Vậy để tìm hai chữ số tận cùng của an, ta lấy số mũ n chia cho 20 Bài 1 : Tìm hai chữ số tân cùng của 22003 Giải : Ta có : 220 ≡ 76 (mod 100) => 220k ≡ 76 (mod 100) Do đó : 22003 = 23.(220)100 = 8.(220)100 = ( 76).8 = 08 Vậy 22003 có hai chữ số tận cùng là 08. Bài 2: Tìm hai chữ số tận cùng của: a) 2999 b) 3999 Giải 999 1000 a) Ta thấy 2 2 : 2 (1) 100 mà 21000 = 210 100 Ta có: 210 1024 1 mod 25 210 1 100 mod 25 21000 1 mod 25 Hay 21000 chia cho 25 dư 1, do đó hai chữ số tận cùng của 21000 có thể là 01; 26; 51; 75, nhưng 21000 là bội của 4 nên hai chữ số tận cùng của nó phải là 76 (2) Từ (1) và (2) ta thấy số 76 chia 2 thì hai chữ số tận cùng là 38 (= 76:2) hoặc 88(=186:2) nhưng cũng do 2999 cũng là bội của 4 nên hai chữ số tận cùng của 2999 là 88. b) 3999 31000 :3 Ta có: 34 = 81 19 mod100 38 192 61 mod100 310 61.9 49 mod100 3100 4910 01 mod100 1000 3 01 mod100 , nghĩa là hai chữ số tận cùng của 31000 là 01. Số 31000 là bội của 3 nên chữ số hang trăm của nó khi chia cho 3 phải dư 2( Chia tiếp thì số 201 chia hết cho 3, nếu số dư là 0 hay 1 thì số 001, 101 không chia hết cho 3) Vậy 3999 31000 :3 có hai chữ số tận cùng là 76 (= 201 : 2) 9
File đính kèm:
- chuyen_de_16_dong_du_thuc_boi_duong_hoc_sinh_gioi_toan_8.doc