Bài tập trắc nghiệm Chuyên đề số phức – Toán Lớp 12
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập trắc nghiệm Chuyên đề số phức – Toán Lớp 12", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Bài tập trắc nghiệm Chuyên đề số phức – Toán Lớp 12

A – LÝ THUYẾT CHUNG 1. Khái niệm số phức Tập hợp số phức: C Số phức (dạng đại số) : z a bi (a, b R , a là phần thực, b là phần ảo, i là đơn vị ảo, i2 = –1) z là số thực phần ảo của z bằng 0 (b = 0) z là thuần ảo phần thực của z bằng 0 (a = 0) Số 0 vừa là số thực vừa là số ảo. a a ' Hai số phức bằng nhau: a bi a’ b’i (a, b,a ',b ' R) b b' 2. Biểu diễn hình học: Số phức z = a + bi (a, b R) được biểu diễn bởi điểm M(a; b) hay bởi u (a; b) trong mp(Oxy) (mp phức) 3. Cộng và trừ số phức: a bi a’ b’i a a’ b b’ i a bi a’ b’i a a’ b b’ i Số đối của z = a + bi là –z = –a – bi u biểu diễn z, u ' biểu diễn z' thì u u ' biểu diễn z + z’ và u u ' biểu diễn z – z’. 4. Nhân hai số phức : a bi a' b'i aa’–bb’ ab’ ba’ i k(a bi) ka kbi (k R) 5. Số phức liên hợp của số phức z = a + bi là z a bi z1 z1 22 z z; z z' z z'; z.z' z.z'; ; z.z a b z2 z2 z là số thực z z ; z là số ảo z z 6. Môđun của số phức : z = a + bi z a2 b2 zz OM z 0,zC, z 0 z 0 zz z.z ' z . z ' z z' zz' z z ' z' z ' 7. Chia hai số phức: 1 z' z'.z z '.z z ' z 1 z (z 0) z 'z 1 w z ' wz z 2 zz 2 z.z z 8. Căn bậc hai của số phức: 22 2 x y a z x yi là căn bậc hai của số phức w a bi z w 2xy b w = 0 có đúng 1 căn bậc hai là z = 0 w 0 có đúng hai căn bậc hai đối nhau Hai căn bậc hai của a > 0 là a Hai căn bậc hai của a < 0 là a.i 9. Phương trình bậc hai Az2 + Bz + C = 0 (*) (A, B, C là các số phức cho trước, A 0 ). Trang 2 B – BÀI TẬP SỐ PHỨC VÀ CÁC PHÉP TÍNH TRÊN SỐ PHỨC Câu 1: Biết rằng số phức z x iy thỏa z2 8 6i . Mệnh đề nào sau đây sai? x4 8x2 9 0 x2 y2 8 A. B. 3 xy 3 y x x1 x 1 22 C. hay D. x y 2xy 8 6i y3 y 3 Câu 2: Cho số phức z m 1 m 2 i, m R . Giá trị nào của m để z 5 m 6 A. 2m 6 B. 6m 2 C. 2m 6 D. m 2 2i 2 1 2i 3 Câu 3: Viết số phức dưới dạng đại số: 3 i A. 2i – 13 B. 2i – 11 C. – 11 – 14i D. 2i + 13 Câu 4: Tìm mệnh đề sai trong các mệnh đề sau: a 0 A. Số phức z a bi 0 khi và chỉ khi b 0 B. Số phức z a bi được biểu diễn bởi điểm M(a; b) trong mặt phẳng phức Oxy. C. Số phức z a bi có môđun là a2 b2 D. Số phức z a bi có số phức đối z' a bi 1 Câu 5: Cho số phức z a bi,a,b R và các mệnh đề. Khi đó số z z là: 2 1) Điểm biểu diễn số phức z là M a;b . 1 2) Phần thực của số phức z z là 2 3) Môdul của số phức 2z z là 9a2 b2 4) z z A. Số mệnh đề đúng là 2 B. Số mệnh đề đúng là 1 C. Số mệnh đề sai là 1 D. Cả 4 đều đúng Câu 6: Mệnh đề nào sau đây sai. A. z1 z2 z1 z2 B. z 0 z 0 C. Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z 1 | là đường tròn tâm O, bán kính R = 1 D. Hai số phức bằng nhau khi và chỉ khi phần thực và phần ảo tương ứng bằng nhau Câu 7: Cho hai số phức z1 4 3i, z2 4 3i, z3 z1 .z2 . Lựa chọn phương án đúng: 2 A. z3 25 B. z3 z1 C. z1 z2 z1 z2 D. z1 z2 3i 3 i Câu 8: Cho các số phức z , z ' . Trong các kết luận sau: 57i 5 7i (I). z z ' là số thực, ** ĐT: 0978064165 Trang 4 5 12i 5 6i 5 12i 5 6i A. B. C. D. 13 11 13 11 3 1 i 3 Câu 22: Tính số phức z : 1 i A. 1 + i B. 2 + 2i C. 2 – 2i D. 1 – i 5 1 i 5678 Câu 23: Cho z , tính z z z z . 1 i A. 4 B. 0 C. 3 D. 1 Câu 24: Tính giá trị P ii 2 i3 ... i11 là A. −1 B. 0 C. 1 + i D. 1 – i 2007 Câu 25: Tính P 1 5i 1 3i kết quả là A. 22007 i B. 2007i C. 22007 D. 22007 i Câu 26: Giá trị của biểu thức A i105 i 23 i 20 – i 34 là: A. 2i B. 2 C. 2i D. 2 z2 1 Câu 27: Nếu z 1 thì z A. Là số ảo B. Bằng 0 C. Lấy mọi giá trị phức D. Lấy mọi giá trị thực 16 8 1i 1 i Câu 28: Số phức z bằng: 1i 1 i A. i B. 2 C. i D. 2 ab iz 1 3i z 2 Câu 29: Biết số phức z i ( với a, b, c là những số tự nhiên) thỏa mãn z . Khi cc 1 i đó giá trị của a là: A. - 45 B. 45 C. - 9 D. 9 x1 y 1 Câu 30: Cho x, y là 2 số thực thỏa điều kiện: là: x1 1 i A. x 1;y 1 B. x 1;y 2 C. x 1;y 3 D. x 1;y 3 3 z1 z2 Câu 31: Cho z1 2 3i;z2 1 i . Tính : (z1 z2 ) 61 85 A. 85 B. C. 85 D. 5 25 Câu 32: Cho hai số phức z1 ax b, z2 cx d và các mệnh đề sau: 1z (I) 22 ; (II) z1 z2 z1 z2 ; (III) z1 z2 z1 z2 . z1 a b Mệnh đề đúng là: A. Chỉ (I) và (III) B. Cả (I), (II) và (III) C. Chỉ (I) và (II) D. Chỉ (II) và (III) Câu 33: Tìm căn bậc hai của số phức z 7 24i A. z 4 3i và z 4 3i B. z 4 3i và z 4 3i C. z 4 3i và z 4 3i D. z 4 3i và z 4 3i 1 Câu 34: Cho z 5 3i . Tính z z ta được kết quả là: 2i Trang 6 A. 1 3 B. 2i C. 1 3 i D. 1 3 2i Câu 49: Cho 2 số phức z1 2i,z 2 1 i . Hiệu z1 z2 A. 1 + i B. 1 C. 2i D. 1 + 2i Câu 50: Tính 3 4i (2 3i) ta được kết quả: A. 3 i B. 5 7i C. 1 7i D. 1 i Câu 51: Đẳng thức nào đúng A. (1 i)4 4 B. (1 i)4 4i C. (1i) 8 16 D. (1 i)8 16 z Câu 52: Cho số phức z = 2i + 3 khi đó bằng: z 5 12i 5 12i 5 6i 5 6i A. z B. z C. z D. z 13 13 11 11 Câu 53: Số 12 5i bằng: A. - 12.5 B. 7 C. 13 D. ` 119 Câu 54: Giá trị biểu thức (1 - i 3 ) 6 bằng: 5 4 A. 64 B. 2 C. 2 D. Kết quả khác z1 Câu 55: Tính , với ` z1 1 2i và z2 2 i z2 A. 1 - i B. - i C. 1 + i D. I Câu 56: Giá trị `i2008 bằng A. i B. - 1 C. - i D. 1 Câu 57: Nghịch đảo của số phức 5 2i là: 52 52 52 A. ` i B. ` i C. ` i D. 29 29 29 29 29 29 Câu 58: Tìm cặp số thực x, y thỏa mãn: ` x2y 2x yi 2x y x 2y i 1 12 12 A. x y B. x ; y C. x y 0 D. x ; y 2 33 33 Câu 59: Giá trị biểu thức (1 + i)10 bằng A. i B. Kết quả khác C. – 32i D. 32i Câu 60: Dạng đơn giản của biểu thức (4 3i) (2 5i) là: A. 1 + 7i B. 6 + 2i C. 6 – 8i D. 1 – 7i Câu 61: Các căn bậc hai của 8 + 6i là 1 3 i 1 3 i 1 3 i A. Kết quả khác B. C. D. 2 3 i 2 3 i 2 3 i Câu 62: Số nào sau đây bằng số 2 i 3 4i A. 5 4i B. 6 11i C. 10 5i D. 6 i 2i12i 2 i 1 2i Câu 63: Cho z . Trong các két luận sau, kết luận nào đúng? 2i 2 i 22 A. z.z B. z là số thuần ảo C. z D. zz 22 5 Câu 64: Thu gọn z = i + (2 – 4i) – (3 – 2i) ta được: A. z = 5 + 3i B. z = - 1 – 2i C. z = 1 + 2i D. z = - 1 – i Câu 65: Thu gọn z = i(2 – i)(3 + i) ta được: Trang 8
File đính kèm:
bai_tap_trac_nghiem_chuyen_de_so_phuc_toan_lop_12.pdf